Errata

Volume 20, Number 4 (1976), in the article, "An Algorithm for Generating Goldstone and Bloch-Brandow Diagrams," by Uzi Kaldor, pp. 432-441:

An error in the computer program affected the number of distinct, connected diagrams in the higher orders. The corrected Table I is given below.

Order	Exchange sets	All diagrams	αβ-contributing	Run time (CDC6600 sec)
	Go	ldstone diagrams wi	thout bubbles	
13	4	13	1	0.25
4	31	192	19	4
5	456	7006	615	190
	G	oldstone diagrams	with bubbles	
1–3	14	58	1	0.7
4	122	1150	37	20
	Bloch-Bra	ndow, 1–2 valence l	ine pairs, no bubbles	
1–3	41	148	22	2
4	644	5160	778	97
	Bloch-Bra	ndow, 3-4 valence l	ine pairs, no bubbles	
1–3	27	63	20	2
4	779	4219	1581	245

TABLE I Numbers of Distinct Connected Diagrams

Volume 26, Number 3 (1978), in the article, "Accurate Numerical Solutions of Integral Equations with Kernels Containing Poles," by Harold Cohen, pp. 257–276:

Equation (27a) should read

$$\phi(x_i, x'; E) = f(x_i, x'; E) - \frac{2}{\pi} \sum_{j=1}^{N} M_{ij} \phi(x_j, x'; E).$$

439

Equation (29) should read

$$\Psi(p^2, p'^2; k_0^2) = \lambda(p^2 + \beta^2)^{-1} \left(p'^2 + \beta^2\right)^{-1} \left(1 + \frac{\lambda}{2\beta(\beta - ik_0)}\right)^{-1}.$$

The last sentence on page 265 should read "The transformation $p^2 = (1 + x)/(1 - x) \dots$ "